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The linear stability of co-extrusion flow of two upper convected Maxwell fluids 
through a pipe at low Reynolds numbers is studied for arbitrary wavelength 
disturbances. The fluids interface can become unstable due to various mechanisms. 
It is shown that elasticity of the fluids can stabilize the capillary instability and a 
linearly stable interface can be achieved by appropriate choice of controlling 
parameters. 

1. Introduction 
Maintaining a stable interface between two viscoelastic fluids is af fundamental 

importance to co-extrusion, a method frequently used for forming oamposite 
materials of desired mechanical and optical properties. Various interfaoial insta- 
bilities have been observed during co-extrusion and a thorough understanding of 
these interfacial instabilities is essential for this as well as many ather industrial 
processes. 

Interfacial instabilities usually occur in shear flows of multiple viscous and 
viscoelastic fluids. Using a linear stability analysis, Yih (4967) has shown that an 
interfacial instability can occur at vanishingly small Reynolds numbers for plane 
Couette/Poiseuille flow of two viscous Newtonian fluids and this instability is due to 
a stratification in fluid viscosities. There are many recent investigations on interfacial 
instabilities in various shear flows of viscous Newtonian fluids. The recent monograph 
of Joseph & Renardy (1992) gives the most comprehensive summary of these studies. 
However, very few investigations on interfacial instabilities of viscoelastic fluids in 
shear flows have been conducted (Larson 1992). One of the major conclusions drawn 
from the early studies concerning viscoelastic fluids is that the elasticity of the fluids 
can affect interfacial instabilities only when the viscosities of these two fluids are 
different. Thus, matching the viscosities of two fluids should eliminate interfacial 
instabilities. Viscosity matching has been used as a ‘rule-of-thumb’ in the polymer 
industry for a long time. However, it has been observed that interfacial instabilities 
can still occur even when the viscosities of the fluids are matched. This phenomenon 
was not explained theoretically until the recent works of Renardy (1988) and Chen 
(1991 a, b ) .  Chen (1991 b)  explicitly showed that an incorrect interfacial condition has 
been applied in all of the previous studies, except the most recent ones by Renardy 
(1988) and Chen (1991 a ) ,  on interfacial instability problems of two viscoelastic fluids. 
With the corrected interfacial condition, a stratification in elasticity can induce at1 

interfacial instability, even in the absence of density and viscosity stratifications. 
For flow through a circular pipe, Chen (1991 a)  and Chen & Joseph ( 1  992) have 

carried out linear analyses on the stability of the interface between two co-est t~ut1e.d 
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upper convected Maxwell (UCM) fluids to long-wave and short-wave disturbances, 
respectively. These studies indicate that in both long-wave and short-wave limits, 
the interfacial mode, and only the interfacial mode, can become unstable. Elasticity 
is shown to have a dominant effect on these interfacial instabilities when inertia is 
small. Thus the elastic property of the co-extruded fluids plays an important role in 
determining the stability of the interface, since inertia is usually very small for the 
co-extrusion process. 

The stability diagrams for the long-wave and short-wave limits obtained by Chen 
(1991 a) and Chen & Joseph (1992) indicate that the long- and short-wave interfacial 
instabilities in co-extrusion flow can be avoided by proper choices of controlling 
parameters. This suggests the possibility of maintaining a smooth fluids interface, 
linearly stable to infinitesimal disturbances of all wavelengths, for co-extrusion flow 
through a pipe. In  this paper, we generalize the analyses of Chen (1991~)  and Chen 
& Joseph (1992) to arbitrary wavelength disturbances. We demonstrate, through 
constructing stability diagrams in the Weissenberg number vs. wavenumber plane 
for various parameters, that it is indeed possible to find regions in controlling 
parameter space for which the interface is linearly stable. Stability diagrams 
corresponding to a given pair of viscoelastic fluids and die geometry can lead to the 
identification of appropriate operating conditions, and thus provide qualitative 
guidance for co-extrusion practice. 

In  $2, we formulate the general linearized equations a t  the fluid interface and 
discuss all the possible interfacial instabilities driven by various jumps across the 
interface. We then study a relatively simpler case in which both the core and the 
annulus fluids are modelled by the UCM constitutive equation. We show in $3  that 
elasticity of the fluids can stabilize the capillary instability and we present neutral 
stability diagrams for selected parameters in $4. 

2. Origins of interfacial instabilities 
Consider co-extrusion flow of two immiscible viscoelastic fluids through a circular 

pipe of inner radius R,, driven by a constant pressure gradient @/ax( < 0), where the 
fluids are forced to flow in the positive x-direction. Fluid 1 is located in a core region 
(region 1)  and fluid 2 in the annulus surrounding the core (region 2). The governing 
equations admit a unidirectional flow solution with a perfect cylindrical fluids 
interface r = R ,  when gravitational forces are negligible or when the pipe is arrange 
vertically. We are interested in the linear stability of this core-annular flow, for 
which the velocity in the core and the annulus are given by qi = e, R ( r ) ,  i = 1,2.  
The non-zero extra stress component: are f irx(r) ,  Brr(r),  f?@&r), fJzz(r) in each region, 
where the stress tensor is ? = -PI+ S. The transverse pressure gradient is given by 

where prime stands for the derivative with respect to  the radial coordinate r ,  and the 
second normal stress difference N2 is defined as 

N2 = firr(r) -fioo(r). (2.2) 

fil = Xlzs(r) -Srr (v ) .  (2.3) 

We also define the first normal stress difference : 



Stability of the interface in co-extrusion flow 49 1 

If the velocity, pressure and extra stress perturbations are u = e, u + ee v + e, w, p and 
S, and the fluids interface is perturbed to R, + 6(x, 0, t ) ,  then the linearized equations 
for the disturbances at the unperturbed interface ,To : r - R, = 0 are 

as - as 
u = -+ W(R,) - , 

at ax 

(2.10) 

where cr is the interfacial tension coefficient and [ = ( - ( )2  is the jump across the 
unperturbed interface r = R,. 

Bhatnagar & Giesekus (1970) have shown that Poiseuille flow of a single 
viscoelastic fluid in a circular pipe is stable to infinitesimal disturbances at  low 
Reynolds numbers. When a straight streamline is perturbed to a curved shape, the 
tension along the straight streamline (first normal stress) created from the base 
Yoiseuille flow will pull the streamline back to  its straight position. In the presence 
of a fluids interface, however, an interfacial mode is introduced and this mode can 
become unstable due to a discontinuity across the interface in either perturbation 
velocity or perturbation stress. 

All the possible causes of the interfacial instabilities can be identified from the 
set of interfacial equations, (2.4)-(2.10). The term I[@'(R,)]cY in (2.7) induces a 
discontinuity in the streamwise perturbation velocity w. This discontinuity of the 
streamwise perturbation velocity can cause an interfacial instability. Since the jump 
in the slope of the base flow velocity profile [@(R,)Jj is proportional to the viscosity 
difference of these two fluids, this instability is due to a viscosity stratification. This 
type of interfacial instability was first discussed by Yih (1967) for planar geometry 
and has been the subject of many recent investigations for various shear flows of two 
immiscible Newtonian fluids (Hickox 1971; Hooper & Boyd 1983, 1987; Joseph, 
Renardy & Renardy 1984; Yiantsios & Higgins 1988; Preziosi, Chen & Joseph 1989; 
Hu & Joseph 1989; Chen, Bai & Joseph 1990; Chen & .Joseph 1991). The conditions 
under which this instability occurs usually depend on the relative volume and the 
arrangement of the fluids. 

Two terms can make the streamwise perturbation shear stress S,, discontinuous 
across the interface: [&,I S, and [al] aS/az (equation (2.8)). [$.J S is due to non- 
parabolicity of the base flow velocity profile and it vanishes for constant-viscosity 
fluids when gravitational force is negligible. An example for which this term is non- 
zero is that of vertical core-annular flow of two Newtonian fluids with different 
densities. In this case, [&J is proportional to the density difference and it can 
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introduce an interfacial instability (Hickox 1971; Smith 1989; Chen et al. 1990). The 
second term @J a6/ax is present for viscoelastic fluids only, because is the first 
normal stress difference of the base flow a t  the interface which is identically zero for 
Newtonian fluids. This term can drive an elastic interfacial instability in shear flows 
of multiple viscoelastic fluids even in the absence of viscosity and density 
stratifications, an instability first revealed by Renardy (1988) for planar geometry 
and later examined in detail by Chen (1991a, b )  and Chen & Joseph (1992) for both 
planar and circular geometries. Hinch, Harris & Rallison (1992) have recently 
explored the physical mechanism for this elastic instability in the long-wave limit for 
co-extrusion flow in the case of matched viscosities and densities. 

The circumferential perturbation shear stress S,, is not continuous for non- 
axisymmetric disturbances if the jump in the second normal stress difference of the 
base flow N2 = $ , , ( T ) - - # ~ ~ ( T )  across the interface is not zero, as is evident from (2.9). 
A non-axisymmetric interfacial instability can thus result from this discontinuity. 
During the final preparation of this article, we become aware of the recent 
independent work of Hinch et al. (1992), the latest version of which includes a study 
of the effect of the jump in the second normal stress difference [N2] on the interfacial 
instability in the long-wave limit for the case of matched viscosities and densities, 
and zero interfacial tension. Their study for this special case shows that, indeed, the 
jump in #2 can drive a long-wavelength non-axisymmetric interfacial instability. 
They also find the conditions under which the growth rate of this non-axisymmetric 
mode dominates that of the axisymmetric mode caused by the jump in Nl for this 
special case. The second normal stress difference for most viscoelastic fluids is small, 
however, and we expect that the growth rate for the non-axisymmetric mode will be 
smaller than fhat for $he axisymmetric mode in the presence of even a small amount 
of interfacial tension. 

The jump in the second normal stress difference of the base flow can affect 
axisymmetric disturbances as well since i t  also appears in the normal-direction stress 
balance equation a t  the interface, (2.10). For axisymmetric disturbances, if we 
substitute the normal modes f = AT) exp Lia(x-ct)] into (2.10), where a is the 
streamwise wavenumber and c is the complex wave speed, we then obtain (after 
dropping the tilde) 

(2.11) 

In the long-wave limit for the case of matched viscosities and densities, the quasi- 
unidirectional approach of Hinch et al. (1992) can be applied and it can be easily 
verified from (2.1 1) $hat [ f12]  is destabilizing for long waves if [fiJ > 0, because it will 
then have the same sign as the interfacial tension term for a+O. This implies that 
the effect of the jump in the second normal stress difference is destabilizing if the 
magnitude of the second pormal stress difference of the core fluid is smaller than that 
of the annulus fluid, since a2 < 0 for most fluids. Hinch et al. (1992) have in fact 
obtained a formula for the growth rake for this long-wave instability for the case of 
matched viscosities and densities, and zero interfacial tension. 

It is noted from (2.4)-(2.10) that when the interface is perturbed infinitesimally 
from its perfecet cylindrical shape, various jumps in base flow properties will either 
drive the interface further away or push it back to its original location. Perturbation 
bulk motions are in general generated by these interfacial actions and they determine 
the stability of the interface. The way each driving mechanism enters into the 
determination of the stability is not obvious. This can be demonstrated by the 
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solution of the co-extrusion problem in the long-wave limit for UCM fluids (Chen 
1991a). At the leading order in the long-wave limit the viscosity stratification (the 
I[@'(R,)]S term in (2.7)) drives a neutrally stable secondary flow in the bulk. The 
elasticity of the fluids affects the interfacial stability not only through the jump in 
the first normal stress difference across the interface, [fill, but also through the 
elastic stresses associated with the leading-order secondary motion driven by the 
viscosity stratification. Even for zero stratification in the first normal stress 
difference, I#,] = 0, the interface can become unstable due to the coupling of 
viscosity stratification and the elasticity of the fluids. An example of this case can be 
found from figure 5 of Chen (1991 a) for UCM fluids. When m, = 0.25, p = 4, the jump 
[#J = 0, but instability occurs for a = 2.5 (see definitions for these parameters in 
(2.12) below). 

The discussions above show that the fluids interface in co-extrusion flow can 
become unstable due to various mechanisms, some of which are reasonably 
understood and others that are yet to be thoroughly studied. How these driving 
mechanisms work in favour or against the stability of the interface could be subtle. 
In  the remainder of this paper, we shall concentrate on the effect of the elasticity of 
the fluids on the stability and restrict our attention to  the parameter ranges for 
which the interface is potentially stable. We employ a Chebyshev pseudo-spectral 
method (Canuto et al. 1988) to discretize the eigenvalue problem governing the linear 
stability to axisymmetric disturbances of co-extrusion flow of two UCM fluids with 
matched densities (equations (2.12)-(2.17) in Chen 1991 a). The resulting generalized 
matrix eigenvalue problem is solved using the available IMSL routine EIGZC. 
Convergence tests have been conducted and the numerical results show good 
agreement with those of the asymptotic analysis. Care has been taken to detect 
spurious modes due to numerical discretization (Ho & Denn 1978; Lee & Finlayson 
1986; Renardy & Renardy 1986; and Lim & Schowalter 1987). The following 
dimensionless parameters are used : 

a = R,/R,, 

(ml, m,) = (1, T2/ql) (viscosity ratio), 

(2.12) 
= &/A,  (relaxation time ratio), 

Re, = p@(0)R,/ri, i = 1,2  (Reynolds numbers), 

We, = At @(0)/Bl, i = 1,2  (Weissenberg numbers), 

Ca = A, c/(qlBl) (interfacial tension parameter), 

where W(0) is the centreline velocity of the basic flow, q is the viscosity and h is the 
relaxation time in the UCM model. Note that ReJRe, = m2, We,/ We, = p. We shall 
use the core Reynolds number as our reference Reynolds number, Re = Re,, and the 
core Weissenberg number as our reference Weissenberg number, We = We,. 

3. Elastic stabilization of the capillary instability 
Capillary breakup of a viscoelastic liquid filament into droplets is a subject of 

great interest. Most of studies on surface- tension-driven breakup follow the linear 
approach first used by Rayleigh (1879). Earlier investigations on linear stability 
concerning a completely relaxed viscoelastic filament conclude that a disturbance 
will grow more rapidly on a viscoelastic filament than on a Newtonian filament with 
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FIGURE 1. Growth rates for capillary instability on a sheared viscoelastic filament in an identical 
fluid medium. u = 1.05, Cu = 0.2, Re = 0. Weissenberg numbers are marked above each curve. 
Elasticity of the fluid is stabilizing. 

the same shear viscosity. In  fact, the linear stability problem for a viscoelastic 
filament reduces to that for a Newtonian filament with an effective viscosity. The 
elastic nature of the fluid is to make the effective viscosity smaller than the shear 
viscosity and thus increase the growth rate to a larger value (Goren & Gottlieb 1982). 
This result seems to disagree with experimental observations that it takes longer to 
break up a viscoelastic fluid filament by capillarity, which is believed to result from 
the large resistance of viscoelastic fluid to elongational stretching deformations. Goren 
& Gottlieb (1982) argue that un-relaxed tensile stress generated in the nozzle from 
which the jet is issued may explain the retarded breakup of a viscoelastic jet 
observed in the experiments. They add a constant residual tension to  the linear 
analysis and find that this residual tension can stabilize the capillary instability from 
their approximate analysis. Bousfield et al. (1986), on the other hand, attribute the 
above discrepancy to the insufficiency of the linear stability analysis and performed 
a nonlinear study using a transient finite-element numerical method and an 
approximate one-dimensional analysis. Their results seem to agree well with 
available experiments. 

Capillary breakup of a sheared viscoelastic filament in another viscoelastic or 
Newtonian medium has not been studied. The co-extrusion problem can serve as a 
model for such a study. The core fluid can break-up into slugs or drops due to the 
capillary instability, although the interfacial tension between polymeric fluids is 
usually small. For a Newtonian fluids system, Preziosi et al. (1989) have shown that 
the capillary instability, tending to break up a sheared Newtonian core filament, can 
be completely stabilized in some parameter range by sufficient shear of the fluids. 
Chen & Joseph (1991) further pointed out that  this shear stabilization of capillary 
instability is due to the inertia of both the core and the annulus fluids. For 
viscoelastic fluids in co-extrusion flow, the Reynolds numbers of both the core and 
the annulus fluids are usually very small, either due to the large viscosity or the low 
velocity of the fluids. Thus, stabilization due to inertia is probably not enough to 
overcome the capillarity. However, high levels of elastic stress can provide another 
way to stabilize the capillary instability, which will be demonstrated by the following 
examples. 

Figure 1 shows the growth rates of the capillary instability on a sheared 
viscoelastic filament in an identical fluid medium : m2 = /3 = 1, for a = 1.05, Ca = 0.2, 
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FIGURE 2 .  Growth rates for a = 1.05, m2 = 0.2, p = 1.6, Re = 0,  Ca = 0.2 and various 
Weissenberg numbers. Capillary instability is completely stabilized when We = 0.2. 
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FIGURE 3. Effect of elastic stratification on capillary instability. a = 1.05, m, = 0.2, Re = 0, Ca = 
0.2. A more elastic core, B > 1, is good for stabilization. We, = 0 corresponds to the case of a 
Newtonian annulus, for which the capillary instability is completely stabilized. 

and zero inertia, Re = 0. The growth rate for large Weissenberg number is smaller 
than that for smaller Weissenberg number. This indicates that the tensile stress (first 
normal stress) developed along the streamlines for the sheared base flow is stabilizing 
the capillary instability. Moreover, the larger the normal stress, the stronger is this 
stabilization. The tension along the streamline retards even the linear growth of the 
capillary instability. 

In figure 2 the growth rates for a = 1.05, m2 = 0.2, /3 = 1.6, Re = 0,  Ca = 0.2 are 
plotted for We = 0.05,0.1,0.2. This corresponds t o  a situation of fixed viscosity ratio 
and fixed elasticity ratio between the core and annulus fluids. The growth rate for the 
capillary instability is reduced tremendously by increasing the Weissenberg number. 
Increasing Weissenberg number can be thought of as either increasing the extrusion 
speed for given fluids or, for given extrusion speed, increasing the elasticity of both 
fluids while keeping their ratio fixed. When the elastic stress is large enough, We = 
0.2, the capillary instability is completely stabilized. 

Figure 3 shows how a stratification in elasticity affects the capillary instability. 
The growth rates plotted are for a = 1.05, m2 = 0 . 2 ,  Re = 0, G'a = 0.2, fixed 
Weissenberg number, We = 0.05 and various relaxation time ratios. The curve for 
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FIGURE 4. Growth rates for different sizes of core. m2 = 0.2, Re = 0,  Ca = 0.2, /s' = 1.6, We = 
0.05. The larger the core, the stronger is the elastic stabilization. 

p = 1 corresponds to the case of equal elasticity. The growth rate for a more elastic 
annulus, /3 = 0.5, is larger than that for equal elasticity, and the opposite is true for 
a less elastic annulus, p = 1.6. Thus a more elastic core is beneficial for stabilization 
of the capillarity. For the case of a Newtonian annulus, We, = 0, the capillary 
instability is completely stabilized. 

The effect of the size of the core relative to the pipe on the capillary instability is 
shown in figure 4, for rrL2 = 0.2, Re = 0 ,  Ca = 0.2, /3 = 1.6, and We = 0.05. When a is 
small (corresponding to a situation in which the interface is close to the pipe wall), 
the shear rate in the core is large and so is the elastic stress. Thus the growth rates 
for small values of a are smaller than those for larger values due t o  the higher level 
of elastic stress, which is stabilizing. 

The above examples illustrate that the elasticity of the fluids can be very effective 
in stabilizing the capillary instability. However, this stabilization does not work 
uniformly for all the combinations of parameters. In  fact elastic destabilization could 
occur in some parameter range. It is a tremendous task to find the parameter ranges 
for which the elasticity of the fluids stabilizes the capillarity in low-speed flow, due 
to the large number of parameters present. Some suggestive information, however, 
can be obtained by inspecting figures 4 and 5 of Chen (1991 a), which are the neutral 
stability curves in the long-wave limit a+O. In  general, for any fixed viscosity ratio 
m2, the elasticity of the fluid is stabilizing if the volume of the more elastic 
component exceeds a critical volume which depends on the viscosity ratio m2. For 
any fixed volume ratio we can also find ranges for the viscosity ratio m2 and 
relaxation time ratio p for which the elastic effect is stabilizing. Most of the 
parameters used in the above examples fall in the regions where elasticity is 
stabilizing the longest waves, a+ 0. The exceptions are those for a = 2.0,5.0 in figure 
4, for which elasticity destabilizes the longest waves. 

4. Stability diagrams 
The linear stability of the interface between two co-extruded UCM fluids is 

controlled by many parameters. In  co-extrusion practice, however, we are interested 
in the parameters for which the interface is stable. Thus, stability diagrams in 
parameter space are of value since they can provide qualitative guidance for co- 
extrusion operation. In this section, we demonstrate, by constructing stability 
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FIQIJRE 5. Neutral curves for a = 1.05, mz = 0.2, ,4 = 1.6, Re = 0, and Ca = 0, 0.5, 2.0. There are 
two branches. Stable and unstable regions are marked by ‘S’ and ‘U’  respectively. (a)  Upper 
branches; ( b )  lower branches. 

diagrams in the (We, a)-plane for selected parameters, that a linearly stable fluids 
interface can indeed be maintained for an appropriate choice of parameters. These 
stability diagrams are by no means exhaustive, rather they serve as examples 
showing the existence of such stability regions in the parameter space. 

We first st’udy the case o f a  = 1.05, m2 = 0.2, /3 = 1.6, and Re = 0. Figure 5 shows 
the neutral stability curves in the (We, a)-plane for various values of the interfacial 
tension parameter Ca = 0, 0.5, 2.0. There are t w o  branches of the neutral curve : an 
upper branch and lower branch. When the Weissenberg number We is small, the 
interface is unstable tlo the capillary instability whenever interfacial tension Ca is 
non-zero. When C‘a = 0, the interface is stable at low Weissenberg numbers. The 
unstable region is larger for larger values of Ca, which represents stronger capillarity. 
This capillary instability can be stabilized by large elastic stress at  higher values of 
the Weissenberg number. I n  fact, there exists a lower critical Weissenberg number 
beyond which the capillary instability is completely stabilized. For even higher 
values of Weissenberg numbers, an elastic instability can occur, as is evident in figure 
5 (a). This elastic instability occurs at relatively shorter wavelengths. The minimum 
of the upper neutral curve is very shallow so that for any supercritical Weissenberg 
number, waves of various wavelengths, ranging from 0.3 to 0.6 of the core radius 
(10 < a < 20), are expected to be observed. The upper-branch neutral curve for 
Ca = 0 approaches the horizontal line We = 3.8 as a+ co, as indicated by the 
asymptotic result for this case (Chen & Joseph 1992). Interfacial tension stabilizes 
the shortest waves, but the neutral curves for various values of  Ca coincide with each 
other up  to a = 20. In  particular, the upper critical Weissenberg number above 
which the elastic instability occurs remains almost the same for these different 
interfacial tensions, around unity. 

The elastic effect is responsible for the high Weissenberg number instability shown 
in figure 5(a). For Newtonian fluids, viscosity stratmifieation alone does not cause any 
interfacial instability when inertia is absent, beca’use the eigenvalue c in this case is 
real and the perturbation flow driven by viscosity stratification is neutrally stable. 
For viscoelastic fluids, however, both the viscosity stratification and the jump in the 
first normal stress difference across the interface can drive a perturbation flow and 
the net perturbation flow is the superposition of these perturbation flows due to the 
linearity of the problem. Elastic effects are present in both these two perturbation 



498 K .  P. Chen and Y .  Z h n g  

0 10 20 30 40 0 0.2 0.4 0.6 0.8 1.0 

01 a 
FICJURE 6. Inertia effect on interfacial stability. Neutral curves for a = 1.05, m2 = 0.2, ,4 = 1.6, 

Ca = 2.0 and Re = 0, 2.0. ( a )  Upper branches; ( b )  lower branches. 
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FIGURE 7. Effect of elasticity stratification on interfacial stability. Neutral curves for a = 1.08, 
rn2 = 0.2, Re = 0. Ca = 0 and various values of b. (a) Upper branches; (6) lower branches. 

flows which together drives the instability at Weissenberg numbers higher than the 
upper critical value. When both the viscosity and the elasticity of the two fluids are 
the same, no instability other than the capillary one is found. This is consistent with 
the result of Bhatnagar & Giesekus (1970). 

We next include the inertia effect. Figure 6 shows neutral curves for a = 1.05, 
m2 = 0.2, /3 = 1.6, Ca = 2.0 and Re = 0,2.0. Figure 6 ( b )  shows that the lower branch of 
the neutral curve for Re = 2.0 is lower than that for the inertia-less case of Re = 0, 
and thus inertia is stabilizing against the capillarity a t  low speed for these values of 
viscosity ratio and volume percentage. This stabilizing effect of inertia is also 
discussed by Chen & Joseph (1991) in the context of Newtonian fluids. For high 
Weissenberg numbers, on the other hand, inertia slightly lowers the upper branch for 
the portion of very short waves, a > 20, but the upper critical Weissenberg number 
remains unchanged (figure 6 a) .  

The effect of a stratification in relaxation time is demonstrated in figure 7 for a = 
1.05, m2 = 0.2, Ca = 0.5 and Re = 0. Figure 7 ( b )  shows that a more elastic core is 
beneficial for stabilizing the capillary instability. Increasing the elasticity of the core 
slightly lowers the short-wave portion of the upper branch of the neutral curve, as 
indicated by figure 7 (a).  

Increasing the volume of the more elastic core fluid (decreasing a )  has a stabilizing 
effect on the capillary instability (figure 8 b ) ,  but a destabilizing effect on the elastic 
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FIGURE 8. Neutral curves for m2 = 0.2, ,8 = 1.6, Ca = 0.5, Re = 0 and a = 1.05, 1 . 1 .  
(a )  Upper branches; (6) lower branches. 
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FIGURE 9. Neutral curves for a = 1.05, ,8 = 1.6. Ca = 0.5, Re = 0 and various values of m2. 
(a) Upper branches for m2 = 0.16, 0.18, 0.20; (6) lower branches for m2 = 0.1, 0.2. 

instability (figure 8a) .  The shear rate at  the interface is larger when the interface is 
closer to the pipe wall, i.e. when the parameter a is smaller. If the elastic effect is 
stabilizing the capillary instability, then increasing the volume of the core fluid 
(decreasing a )  will intensify this stabilizing effect due to  the increased shear rate and 
thus reduce the size of the unstable region of the capillary instability. On the other 
hand, this increased elastic stress lowers the upper branch because the upper branch 
instability is caused by the elastic effect associated with the perturbation flow driven 
by the viscosity stratification and elasticity stratification. Inspection of figure 8 ( a )  
indicates that, unlike other parameters, changing the volume of the core fluid, or 
equivalently changing the shear rate a t  the interface, changes the upper critical 
Weissenberg number considerably. 

Viscosity ratio m, also alters the neutral stability curves. Figure 9 ( b )  compares the 
lower branch of neutral curves for two viscosity ratios, m2 = 0.1, 0.2, for the set of 
parameters a = 1.05, ~3 = 1.6, Ca = 0.5 and Re = 0. Increasing the value for m2 seems 
to have a stabilizing effect. Figure 9(a)  compares the upper branch of the neutral 
curves for m2 = 0.1,0.18,0.2, for the same set of parameters. In contrast to the lower 
branch, increasing m2 has a destabilizing effect for the high Weissenberg number 
elastic instability. The shear rate in the core is proportional to m2. Increasing m, will 
increase the normal stress in the core and thus has a stabilizing effect on the 
capillarity and a destabilizing effect on the elastic instability. 

The neutral stability curves presented above demonstrate that it is possible to 
maintain a linearly stable smooth interface for co-extrusion flow. For the set of 
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parameters considered, we found that there are two critical Weissenberg numbers, a 
lower one and an upper one. The flow is unstable to  the capillarity if the Weissenberg 
number is below the lower critical value and an elastic instability results if the 
Weissenberg number is larger than the upper critical value. For Weissenberg 
numbers between these two critical values, the flow is linearly stable to disturbances 
of arbitrary wavelength. The lower critical Weissenberg number is influenced by 
various parameters, but the upper critical Weissenberg number, about unity for the 
cases considered, seems to be insensitive to moderate changes in values of most of 
parameters, except that of volume ratio (or parameter a) .  

It should be emphasized, however, that  various types of neutral curves are possible 
owing to the large number of parameters present. The effects of these parameters on 
the interfacial instability may vary, depending on the specific situations. 

5. Conclusions 
The stability of the fluids interface in pressure-driven co-extrusion flow of two 

viscoelastic fluids through a pipe is controlled by many parameters. Formulation of 
the linearized interfacial equations indicates that  the fluids interface can become 
unstable to infinitesimal disturbances due to various mecahanisms. For low Reynolds 
number flow, which is typical for co-extrusion process, interfacial tension and 
elasticity each can drive an interfacial instability. The most amplified waves for the 
high Weissenberg number elastic instability are relatively short. The elasticity of 
the fluids plays a dual role in determining the interfacial stability. It is shown that 
the capillary instability can be stabilized by increasing elastic stress and the elastic 
instability can be avoided by lowering elastic stress. It is possible to  find regions in 
parameter space for which the interface is linearly stable. For the selected parameters 
used in this study, we have constructed neutral stability diagrams in the (We, 01)- 

plane and we have found two critical Weissenberg numbers, We,, < We,,. The 
interface is linearly stable when the Weissenberg number takes values between these 
two critical numbers, Wecl < We < We,,. These stability diagrams suggest that 
stability analysis can be used to provide qualitative guidance for co-extrusion 
practice. 

The calculations presented in the present study are restricted to axisymmetric 
disturbances. For models which do not predict a second normal stress difference in 
viscometric flows, like the UCM used in this study, we expect that in the presence of 
interfacial tension, in general, the non-axisymmetric disturbances will be damped 
and the axisymmetric ones are the most dangerous. 

It should be pointed out that  the UCM constitutive equation used in calculating 
the stability characteristics in $$3 and 4 models real viscoelastic fluid only 
qualitatively and some of the important rheological behaviours, like shear thinning 
and second normal stress difference, are completely missed by this model. The 
emphasis of our present study is placed on the effect of streamwise elastic stress and 
should be regarded as only a first step towards the full understanding of the 
interfacial instabilities in co-extrusion flow. Hinch et al. (1992) study the second 
normal stress effect in an economical fashion for a special case. Further advances 
incorporating shear thinning and second normal stress difference effects require a 
more sophisticated rheological equation of state, and it is probably necessary to 
investigate both axisymmetric and non-axisymmetric disturbances. Nonlinear effects 
also need to be considered. The results obtained from such an analysis will be of great 
value for the relevant polymer industries. 
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